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Abstract Markov Chain Monte Carlo (MCMC) methods may be employed toce
for a probability distribution over a bounded space of fimtarguments to estimate
which argument(s) optimize(s) an objective function. @earch-based optimization
requires sampling the suitability, or fitness, of argumémthie search space. When
the objective function or the fitness of arguments vary wiitiet significant explo-
ration of the search space is required. Search efficiencytibeomes a more relevant
measure of the usefulness of an MCMC method than traditioregsures such as
convergence speed to the stationary distribution and amfimwariance of station-
ary distribution estimates. Search efficiency refers to fawekly prior information
about the search space is traded-off for search effort gavi@ptimal search effi-
ciency occurs when the entropy of the probability distiitmitover the space during
search is maximized. Whereas the Metropolis case of therdsstilCMC algorithm
with fixed candidate generation is optimal with respect ymgsotic variance of sta-
tionary distribution estimates, this paper proves thatkBes case is optimal with
respect to search efficiency if the fitness of the argumerttseiisearch space is char-
acterized by an exponential function. The latter instarfoeptimality is beneficial
for time-varying optimization that is also model-independ
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1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms [6,4,3,2] areefid for simulat-
ing large random fields through sampling, and are frequestiployed in statistical
mechanics applications [2]. MCMC algorithms utilize areducible, aperiodic, time-
homogeneous Markov chain such that the stationary disimiur, is the target dis-
tribution. Since convergence to the target distributiogasier to check for reversible
Markov chains, these Markov chains are the most frequeptafdd CMC algorithms
[2].

To optimize an objective function, MCMC algorithms can bediso convert a
prior uniform probability distribution over a bounded sgaspace of arguments that
are candidates for function optimization to a target prdigtdistribution that is
concentrated in a neighborhood at the location of one or rmu@rements that achieve
function optimization. This conversion process can be egished through sam-
pling the suitability, or fitness, of the candidate argureefibe extent to which the
target probability distribution is concentrated in a néigthood may be tuned, with
a limiting case of tunability being a distribution congigfiof a delta function at the
location of an argument that exactly optimizes the functibinis paper proves that,
under certain conditions, a well-known MCMC algorithm izfitg a reversible, irre-
ducible, aperiodic, time-homogeneous Markov chain acdisims optimization by
searching forrefficiently, where this optimal search efficiency is definede quick-
est trade-off of prior information about the search spacsdéarch effort savings [8].
Such savings are important when significant exploratiorhefgearch space is re-
quired, for instance, in model-independent optimizatiotihwme-varying objective
function or argument fitnesses (e.qg., [12]). Optimal seaffibiency is characterized
by a method that maximizes the entropy of the probabilityrihistion over the search
space during the search [7,8]. Hence, this paper clarifeesdhditions under which
the well-known MCMC algorithm, Barker’s algorithm [1], miaxizes entropy.

The approach in this paper is different from the covariana&rimnadaptation evo-
lution strategy [5], which employs a maximum entropy prdbigtdistribution but is
concerned with the propagation of a covariance matrix in amaasimilar to gradient-
based search that is unsuited to time-varying fitness lapeésc The approach is also
not related to the cross-entropy method for optimizatidsi,[ivhich deploys a cross-
entropy heuristic unlike this paper’s adaptation of thethi®f rational behavior [11]
for Markov chains that yields and explains cross-entropgtdad, the approach is
a novel optimization method based on the new theory thatus/algnt to Barker’s
algorithm.

Additionally, this paper’s goal of search efficiency is diffnt from asymptotic
variance, which is the variance of estimates of the statjodastribution when an
MCMC algorithm is started close to stationarity. Optimajagtotic variance is char-
acterized by low values that indicate a lack of volatilitytlire algorithm’s converged
solution. Examining the search efficiency of an MCMC optiatian algorithm is
more useful than determining its asymptotic variance winendbjective function
or the fitness values of the arguments in the search spacemtirtime because
the target distribution correspondingly varies, desgite algorithm being close to
stationarity prior to an objective function or fithess chang
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Search efficiency is also different from convergence spedkt stationary distri-
bution, which, for a time-homogeneous, irreducible, ergddarkov chain, is given
by the second-largest eigenvalue modulus of the matrixasfsition probabilities.
Again, examining the search efficiency of an MCMC optimiaatalgorithm is more
useful than determining its stationary distribution cagemce speed when the ob-
jective function or the fitness values of the arguments instigrch space vary with
time because it is desirable for the algorithm to utilizeomnfiation previously gained
about the search space to improve its convergence speecaftdjective function
or fitness change.

The remainder of this paper is as follows. Section 2 sets epofitimization
problem to be solved by an MCMC search algorithm, and brieiyhlights two
well-known MCMC methods. Section 3 provides sufficient dtinds for optimal
search efficiency through an extension of the theory of matibehavior to Markov
chains. Section 4 develops a technique that satisfies tReisnf conditions for op-
timal search efficiency and explains the method’s equivada Barker’s algorithm.
Section 5 presents conclusions.

The primary original contributions of this paper are thémkin Theorems 2 and
3 and their proofs. A preliminary version of the techniqueSiection 4 appears in
[13], and a few biological parallels of this technique aréealan [14].

2 Background
2.1 Problem Definition

Let X be a search space with elemextsl < i < n. The problem seeks a probability
density functiongy : X — R that accomplishes the specified objective below. Let
z: X — Z be an unknown, computable, and possibly changing funchiahwe are
interested in. The s&is a metric space. Suppose that we are given a desired element
Zyes IN the image ofz, and we wish to findk € X such that||z(X) — zjed| is small
(i.e.,z(X) =~ z4e9. Formally, we want & that helps achieve a known expected value
Y>0,i.e.,

E gy [[/2(X) — Zaedl] = V. &
In the abovey is effectively a tolerance, i.e., it is the acceptable meatadce be-
tween candidates in the imageofompared to the desired image value. Yt =
[|12(X) — Zged|- The scheme to fingy should be efficient in that it trades off prior infor-
mation aboui for search effort savings as quickly as possible. LeZ — R™. We
allow the method to employ a functidh: X — R* : x— F(x) = (f 0 2)(x) = f(z(x)),
a real-valued, positive fitness function.

2.2 MCMC Design

The design of an MCMC algorithm involves finding an ergodidniweof transition
probabilitiesP with elements?; that satisfy
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Here, 7 denotes thé-th element of the stationary distribution vectoover X, and
R;j represents the probability of transitioning from elemgnto elementx;. The
distributionrtis the soughtgs in Section 2.1. A typical choice [2] d%; has the form

Rj = Qijaij, V] #I. (3

Here,Q is a probability transition matrix (called treandidate-generating matiix
with elementsQ;; representing the probability of “tentatively” choosingrartsition
from x; to xj, anda is a probability transition matrix with elements; representing
the probability of accepting that transition. A genericnhadation for the acceptance
probabilities is specified by the Hastings algorithm, wisels

aij = T 4)

where§; are the elements of a symmetric mat8xSpecial cases of the Hastings
algorithm include the Metropolis algorithm, which is usedsimulated annealing
[10], and Barker’s algorithm.

2.3 Metropolis Algorithm
The acceptance probability for the Metropolis algorithrtsSy = 14 min (%,
234) in (4) [2], so that

- 1, Qji
aii = min 1,”). 5
j =min (1.7 ©)
In the case of purely rando@ (Qj; is constant), this becomes
. T
aij = min <1, n;) ) (6)

The Metropolis algorithm is optimal with respect to asyntigtwariance in the class
of Hastings algorithms with fixe® [2].

2.4 Barker’s Algorithm

The acceptance probability for Barker’s algorithm sgts= 1 in (4) [2], so that
1
= )
Y Qi
1+ (’TJ ) (jS )
In the case of purely rando@, this becomes

1

Qij

aij =
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3 Sufficient Conditions for Efficient Search

Extending the theory of rational behavior [11] to Markov ittsayields sufficient con-

ditions for optimal search efficiency. LéX,P) be a time-homogeneous, irreducible,

ergodic Markov chain, wherg = {x1,X2,..., X} is the set of states of a Markov pro-

cessP € R™" is the matrix of transition probabilities for these statsin < o« is

the number of states. Assume that the initial probabilistrdiution over the states

is known, i.e., we are given amnvectorp(0) having elementg; (0) = Pr{.2"(0) = ]

for all x € X, where 2°(0) denotes the state realization at time 0, and we have
n

Y pi(0) = 1. Since we have assumed that the staté§ame ergodic and irreducible,
i=1

they admit a unique stationary probability distributiof [2et m= [r5 75 ... 1] be
the row vector of these stationary probabilities, satrgfyihe constraints; > 0 Vi,

n
and y 15 = 1. LetF : X — R" be a positive fitness function. LBt N be a natural
i=1

number.

Definition 1 The time-homogeneous, irreducible, ergodic Markov chanP) is
said tobehave rationallywith respect to fithesg with level N if

AN
gz(g(()’:))) ,1<i<n1<j<n )

This is a definition ofjlobal rationality, which refers to the ratio of the probabilities.
Each stationary probability can also be explicitly chaggized to ensure Markov
chain rational behavior.

Theorem 1 The time-homogeneous, irreducible, ergodic Markov cHainP) be-
haves rationally with respect to fithess F with level N if amdydf
AN
L L ) PP (10)
> F ()"

Proof See [12].

Here, we have a more general, probabilistic version of thémigation of an
objective function. A Markov chain that behaves rationakyects the state of maxi-
mum fitness with the highest stationary probability, andhilimit asN approaches
oo, this probability is 1. That isN tunes the concentration of the stationary probabil-
ity distribution around the state of maximum fitness, andalimit asN approaches
o, the problem and solution then revert to one of standardropgition. Remarkably,
rational behavior in Markov chains is the result of a sulasigdbptimization.

Theorem 2 The stationary distributiont of the time-homogeneous, irreducible, er-
godic Markov chain(X, P) that behaves rationally with respect to fitness F with level
N solves the optimization problem

min U () = —_iqsi In(rm). (11)
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n
subject to the constrainty 7 = 1, and 75 > 0, Vi, utilizing the fitness distribution
i=1

bi = 7:: ()"

,1<i<n. (12)
> F(x)"
k=1

Proof We use the method of Karush-Kuhn-Tucker (KKT) multiplieossblve the
optimization problem

min (1 ZF
,...,Th
n
subjecttoy m—1=0,and—7 <0, 1<i<n.Let
i=1

L(T8, ..., Th,A, k1, .., Un) = ZF +A<Zm1>émn

The KKT necessary conditions for optimality are

—F )"
Th

n
+A—p=0 1<i<n; qu—lzo; -1 <0,1<i<n A>0;

n
>0 1<i<n A (an) =0; =0, 1<i<n.
The first necessary condition becomes
—FOON+AT— =0, 1<i<n
Sincey;t = 0 for all i, we obtain
—Fi)N4+Am=01<i<n.

Next, the constraint; > O for alli and the positive nature &(x;)N imply thatA # 0.

Therefore,

F (i)™
A )
F

=
IN
IN

S

PR

n
Since 5 1 =1, we find that
i=1




Optimal search efficiency of Barker’s algorithm with an exgotial fitness function 7

and hence,
F o)™
n N
> F (%)
k=1

Thus, the stationary distribution in (10) satisfies the firster necessary conditions
for optimality.
Moreover, we have

,1<i<n

?o(m) o
gmon =0forj #i,
?o(m  F(q)N

0qu = TEZ > 0.

Hence, the optimization problem has a strictly convex costfion and linear con-
straints. Thus, the solution of the first order necessarylitions is the global opti-
mizer.

Note that in (9), rational behavior is invariant under pgsitscaling of fitness.
Hence, there is no loss of generality in assuming that thed#riunction is normal-
ized. Accordingly, letp = [¢1 ¢ ... ¢n] be the distribution of theN™ power of
fitness, where

AN
b= acicn
> F(x)"
k=1
Let o(m)
13
Um=—v—"-1-
> F (%)
k=1
Then, the optimization problem can be normalizednas nnltdi(m) =— E ¢iIn(75),
] 5eeey i=1

n
subject to the constraintg 5 —1=0, and—75 <0, 1 <i <n, which completes the
i=1
proof.

Theorem 2 states that at the optimum, the stationary disioib agrees with the
fitness distribution, i.e 1= ¢. Using the notion of entropy, we can interpret (11) as
follows. First, we recognize the termin(7z) as the information content of state
[16]. Hence, the right hand side of (11) represents the ‘Sgrexpectation of infor-
mation.” Moreover, we have the following.

Corollary 1 The time-homogeneous, irreducible, ergodic Markov cHairP) be-
haves rationally with respect to fithess F with level N if amdyaf its stationary
probability distribution minimizes the fithess-expedatof information. At the opti-
mum, this fitness-expectation of information is the entafipe fitness distribution,
ie.,

U= H(®) =~ 3 bIn(9). 13)
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For Markov chains that behave rationally, and thereforesgss fithess fractions
that are distributed over the set of states as in (12), thenguantifies how egali-
tarian or elitist the states are. That is, the entropy isdstjlwhen all states have equal
fitness; conversely, the entropy is lowest when there is onby state with a fitness
fraction of unity and all other fitness fractions are zerou&ttpn (11) is also derived
and discussed in [9] within the context of Information Thefir6].

Entropy maximization is important for search: ‘In makindgirences on the basis
of partial information, the maximum entropy probabilitysttibution subject to what-
ever is known is the only unbiased assignment we can makegtamny other would
amount to arbitrary assumption of information which by hyyasis we do not have’
[7]. The relationship between entropy maximization androgt search is clarified in
[8]. The optimal search policy for cells with exponentiaiiZiss” ‘appears very much
like an irreversible process in thermodynamics, in whiclindrally non-equilibrium
state relaxes in the the equilibrium state of maximum entrBpt now it is only our
state of knowledge that relaxes to the “equilibrium” commitof maximum uncer-
tainty’ [8].

Applying these results from [7] and [8] to eliminate sear@dsbs during model-
independent optimization with time-varying objective €tion or state fithesses, an
exponential normalized fitness function relates ratioeaklvior, entropy and optimal
search through the following.

Theorem 3 Let y: X — R be an unknown function for which an expected value,
E[y(x)], is a known number Y. The normalized fithess

¢ =ae MY 1<i<n, (14)

and the stationary distributior of the time-homogeneous, irreducible, ergodic Mar-
kov chain(X,P) that behaves rationally with respect to fitness F with leveddires
the optimization problem

max m|n U(g,m= Zd}lln (15)

@1, Pn T,

subject to the constraint
Ely)] =Y. (16)

Proof We use the method of Karush-Kuhn-Tucker (KKT) multiplieossolve the
optimization problem

max H(¢ Zd). In(¢

subject toz $i—1=0,—-¢; <0, 1<i<n, and Hy(x)] — E diy(x) = 0. Let
i=1
(¢l7 ¢n7A17)\27“15 7“(1)

leqb.ln +/\1<Zl¢. >+/\2<E[y(X)]ii¢iy(Xa)>éﬁwi.
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The KKT necessary conditions for optimality are

n
—Ingi —14+A1—A2y(x) — i =0, 1L <i < Z¢i—1=0: ¢ <0,1<i<nm;
i=

n
A1>0; 2220, >0, 1<i<nm )\1<Zl¢i—l> =0;
i=

n
A2 (E[y(X>] - Zdny(m)) =0; uigi=0,1<i<n
i=
The first necessary condition becomes

—Ingi =A1—A2y(%) —pi—1, 1<i<n,
¢ = e(Al—/\ZY(Xi)—Ili—l)’ 1<i<n.

Sinceg; # 0 for alli, g = 0 for alli. We obtain
¢ = g l.g M6 1<j<n,

or equivalently,
i =ae P 1<i<n
Hence, a scheme with underlying Markov chain dynamics tehate rationally

also maximizes the entropy of the fitness distribution when ftthess function is
exponential. The implication is that a fithess function like

F(x) = e ((2%)~7e9%) 17)

together with a scheme that makes use of rational beha@ergsction 4) guarantees
efficient search-based optimization.

4 Barker's Algorithm Satisfies the Sufficient Conditions for Efficient Search

We first develop an MCMC method that optimizes through efficgearch and then
demonstrate that algorithm’s equivalence to Barker'sritigm. The technique devel-
oped here is that of Selective Evolutionary Generationeyst[12], which arose in
the context of tunable, responsive, model-independeimggation.
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4.1 Selective Evolutionary Generation Systems

Definition 2 A Selective Evolutionary Generation Syst@&GS) is a quintuplé =
(X,R,P,G,F), where

— X is a set of arguments that are candidates for objective imaiptimization,
X = {XlaXZa e »Xn};

— Ris a set whose elements can be utilized to transition bet@egumentsR =
{rla r27 R rm};

- P: R—> (O, 1] is a probability mass function dR given byP(r;) = P{Z =r;| =

plv Z pk_

- G: X >< R — X is a mapping from one argument to another using an element fro
R

— F: X —R" is a function that evaluates argument fitness;

— X is reachable througl andR; and

— the dynamics of the system are given by

2 (t+1) = Select 2 (t),G(2 (1), Z(1)),N), (18)

whereSelect X x X x N — X is a random function such thatif € X andx, € X
are any two arguments, aibe N is thelevel of selectivitythen

X1 with probablhtyi)
+F’SX2) (19)

X2 with probab|I|tyﬁN(+;—(X)N
2

In (18), £ (t) denotes the realization of a random argument at tin¥é(t) denotes
the realization of a random element frdfat timet, G(.2"(t),#(t)) denotes the
outcome argument mapped from the realized argument at tirtikizing the element
from Rat timet, and.2"(0) has a known probability mass function.

The Selectfunction has a number of interesting properties [12], iduig, for all

Selectxs,x2,N) =

Nl

PriSelect, xe,N) =x1] (F<><1> > " (20)

PriSelectxi, x2,N) = x2] F(x2)
That is, the ratio of the probabilities of selecting any tveti<is equal to the ratio of
their respective fitnesses raised to the poWerhis property is calletbcal rational-
ity.
Definition 3 Let " = (X,R,P,G,F) be a SEGS. Lex,x; € X andr, € R Thede-
scendancy tenspd, has elements

(21)

1 ifx;=G(%,r), 1<i<n 1<j<n, 1<k<m,
Gijk = .
0 otherwise.

Hence, the descendancy tensor indicates whether it iskpedsi produce; in one

step fromx;, usingrg. We can use this tensor to create a matrix that represents the
conditional probability of transitioning t®; from x;, by utilizing the probability of
selecting each available elemenfRrand summing over ath elements as follows.
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Definition 4 For the SEGT™ = (X,R,P,G,F), the matrixy, called the unselective
matrix of transition probabilities, has elements

m
y; = Prloffspring isx; | progenitor isx] = z GjkPk, 1<i<n 1<j<n (22)
K=1

This matrix is a stochastic matrix (see [12]).
For the SEGT = (X,R P,G,F), the matrix of transition probabilitie®, has
elements

Rj =PlZ°(t+1) =x; [ Z°(t) = xi, (23)
PriSelectxi,x;,N) = x; | Z'(t) = xi]
x Pr{offspring isx; | progenitor isx;], MEZR
) PriSelectxi,xi,N) =X | 27(t) = ] (24)
)| x Proffspring isx; | progenitor isx]
n
+ 5 PrSelectx,x,N) =x | Z(t) = ]
iy
x Prloffspring isx | progenitor isx], if j=1.
1+ (£
= n N o (25)
Vi + leyljv if j=i.
()

The matrix of transition probabilities in (25) is also a $tastic matrix (see [12]).

Theorem 4 For the ergodic SEGF = (X,R P,G,F), assume thay is symmetric.
Then the Markov chain representing the stochastic dynaafittee ergodic SEGS be-
haves rationally with fitness F and level N. That s, the rosteerr= [m 75 ... ),
wherert satisfies(10), is a left eigenvector dP, the matrix of transition probabili-
ties for I, with corresponding eigenvalue 1 (i.et® = ). Hence,ris the vector of
stationary probabilities for the SEGS.

Proof See [12].

The symmetry condition og implies that there exists equiprobable forward and
reverse transitions between any pair of arguments pridreé@élection process.

Theorem 5 For the ergodic SEGF = (X,R P,G,F), assume thay is symmetric.
Then the Markov chain representing the stochastic dynaofitise ergodic SEGS is
time-reversible, i.e.,

R = P, Vi, j. (26)

Proof See [12].

As a consequence, the Markov chain representing the stichgeamics of the
SEGS and its time reversed form are statistically the same.
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4.2 Barker's Algorithm and SEGS

Comparing a SEGS to the treatment in Section 2, a SEG®hasy. For rational
behavior, we impose a symmetry condition resultin@jp= Qji. SettingS; = 1 in
(4), the definition of rational behavior implies that the ggtance probability utilized

by the SEGS algorithm is
1

From (8) and (27), Barker’s algorithm and the SEGS algoridnenthe same.

ajj = 27)

5 Conclusions

Since Barker’s algorithm and the SEGS technique are ea@uitigand a SEGS has
the capacity for optimal search efficiency by Theorem 3 (Whias its hypothesis
satisfied by Theorem 4), it follows that Barker’s algorithrthwvan exponential fitness
function is optimally search efficient.
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